National Repository of Grey Literature 7 records found  Search took 0.01 seconds. 
Model of carrier multiplication due to impurity impact ionization in boron-doped diamond
Mortet, Vincent ; Lambert, Nicolas ; Hubík, Pavel ; Soltani, A.
Boron-doped diamond exhibits a characteristic S-shaped I-V curve at room temperature [1] with two electrical conductivity states, i.e., low and high conductivity, at high electric fields (50 – 250 kV.cm-1) due to the carrier freeze-out and impurity impact ionization avalanche effect. To our knowledge, the carrier multiplication during the change of the conductivity state has not been studied. In this article, we investigate theoretically the effect of acceptor concentration and compensation level on the carrier multiplication coefficient at room temperature to determine the optimal dopants concentration of maximum carrier multiplication. The room temperature hole concentration of boron-doped diamond has been calculated for various acceptor concentration and compensation ratio by solving numerically the charge neutrality equation within the Boltzmann approximation of the Fermi-Dirac statistic.\n
Boron-doped diamond electrodes in electroanalysis of reducible organic compounds
Vosáhlová, J. ; Zavázalová, J. ; Petrák, Václav ; Schwarzová-Pecková, K.
Boron doped diamond (BDD) electrodes became a well-established tool in electroanalysis of oxidizable organic compounds, nevertheless their possibilities in electroanalysis of reducible compounds remain relatively unexploited. Thus, in this study the influence of the presence of oxygen, electrode pretreatment, and activation between individual scans for electroreduction of tartrazine and allura red (azo group), 5-nitroquinoline (nitro group and N-heterocycle), vanillin (aromatic aldehyde), and azidothymidine (azide group) using batch voltammetry was tested.
Boron-doped diamond electrodes in electroanalysis of reducible organic compounds
Vosáhlová, J. ; Zavázalová, J. ; Petrák, Václav ; Schwarzová-Pecková, K.
Boron doped diamond (BDD) electrodes became a well-established tool in electroanalysis of oxidizable organic compounds; nevertheless their possibilities in electroanalysis of reducible compounds remain relatively unexploited. Thus, in this study the influence of the presence of oxygen, electrode pretreatment, and activation between individual scans for electroreduction of tartrazine and allura red (azo group), 5-nitroquinoline (nitro group and N-heterocycle), vanillin (aromatic aldehyde), and azidothymidine (azide group) using batch voltammetry was tested.
Boron doped diamond and its utilization in electroanalysis of derivatives of aromatic compounds
Zavázalová, Jaroslava ; Schwarzová, Karolina (advisor) ; Šelešovská, Renáta (referee) ; Navrátil, Tomáš (referee)
This work is devoted to the study of boron doped diamond as electrode material, its properties and use in electroanalytical methods - in voltammetric and subsequently amperometric methods in combination with high performance liquid chromatography. The series of boron doped diamond films was tested with respect to the effect of boron concentration on their morphology, quality, electrochemical and spectral properties using scanning electron microscopy, atomic force microscopy, Raman spectroscopy, and cyclic voltammetry and differential pulse voltammetry. Further, the effect of boron concentration on the determination of selected substances was investigated, both for their oxidation (2-aminobiphenyl, benzophenone-3) and for their reduction (5-nitroquinoline). Furthermore, a voltammetric and amperometric method was developed for the determination of a mixture of aminobiphenyls and aminonaphthalenes using a boron doped diamond electrode. The effects of activation cleaning programs on the signal of benzophenone-3 were investigated using a boron doped diamond electrode, and the determination of benzophenone-3 on boron doped diamond electrode in the presence of the selected surfactant was studied. Boron doped diamond as carbon-based material was compared with other selected carbon materials such as glassy...
Vanillylmandelic and Homovanillic Acid: Electroanalysis at Carbon-Based Electrodes
Baluchová, Simona ; Schwarzová, Karolina (advisor) ; Dejmková, Hana (referee)
The objective of the present work is the study of the electrochemical behaviour of two diagnostic tumor markers of great importance, vanillylmandelic acid (VMA) and homovanillic acid (HVA), on carbon-based electrodes by using cyclic and differential pulse voltammetry. A comparison was made among non-modified glassy carbon electrode (GCE) and GCE modified by multi-walled carbon nanotubes, Nafion (Nafion/GCE) and poly(neutral red) (PNR/GCE), and further boron doped diamond (BDD) electrode which was activated by anodic polarization (Eakt = +2,4 V, t = 30 s) or by polishing on alumina slurry. Significant differences in the voltammetric responses of VMA and HVA were found, not only among utilized electrode materials which also influenced the way of controlling the oxidation process, but also they depend on the pH value of aqueous media in which these acids occurred. An acidic environment is the most suitable for their determination. Calibration dependences were measured in 0.1 mol∙l−1 phosphate buffer pH 3.0 which was chosen as an optimal supporting electrolyte for differential pulse voltammetric determination. Achieved detection limits were 0.6, 0.9, 0.8 and 1.2 μmol∙l−1 for HVA and 0.4, 1.5, 2.4 and 1.1 μmol∙l−1 for VMA at BDD electrode, non-modified GCE, Nafion/GCE and PNR/GCE, respectively. Limits...
Intrinsic and boron-doped diamond microstructured for electrochemical batteries
Kromka, Alexander ; Babchenko, Oleg ; Rezek, Bohuslav ; Ižák, Tibor ; Libertínová, Jitka ; Hruška, Karel ; Nyholm, L. ; de Oliviera Jorge, E.
Diamond - widest electrochemical window, excellentfor covalent binding of molecules, effective csarge transfer.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.